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EXECUTIVE SUMMARY 

This research presents an adaptive and personalized routing model that enables individuals with 

disabilities to save their route preferences to a mobility assistant platform. The proactive approach 

based on anticipated user need accommodates vulnerable road users’ personalized optimum dy-

namic routing rather than a reactive approach passively awaiting input. Most of the currently 

available trip planners target the general public’s use of simpler route options prioritized based on 

static road characteristics. These static normative approaches are only satisfactory when conditions 

of intermediate intersections in the network are consistent, a constant rate of change occurs per each 

change of the segment condition, and the same fxed routes are valid every day regardless of the user 

preference. In this study, we model the vulnerable road user mobility problem by accommodating 

personalized preferences changing by time, sidewalk segment traversability, and the interaction 

between sidewalk factors and weather conditions for each segment contributing to a path choice. 

The developed reinforcement learning solution presents a lower average cost of personalized, ac-

cessible, and optimal path choices in various trip scenarios and superior to traditional shortest path 

algorithms (e.g., Dijkstra) with static and dynamic extensions. 
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1 INTRODUCTION 

Mobility is an essential component of quality of life. Vulnerable Road Users (VRUs), here defned 

as individuals with mobility issues such as elderly persons or wheelchair users, recognize mobility 

is demanding and may be discouraged from participating in social activities. In novel environments, 

and even familiar ones, VRUs encounter a range of obstacles impeding easy navigation and access 

to locations (Ding et al., 2007). Existing designs of built environments and public transportation 

systems do not entirely fulfll the needs of people with disabilities in terms of mobility and 

accessibility (Poldma et al., 2014). According to a survey among wheelchair users, a narrow 

sidewalk, steep slope, bad weather, and sidewalk surface traversability are examples of outdoor 

obstructions for their navigation (Meyers et al., 2002). Specifc standards are presented by the 

Americans with Disability Act (ADA) and Architecture Barriers Act, to increase the accessibility 

to urban structure facilities of VRUs. However environmental barriers still limit the accessibility 

of the urban areas and public transportation systems for VRUs, which a!ects the quality of their 

life. Identifying and avoiding inaccessible places in the current pavement network as a short-term 

solution instead of redesigning urban transportation and sidewalk networks as a long-term solution 

can accelerate helping VRUs (Ferrari et al., 2014). 

In recent years, the usage of online navigation systems has increased (Ding et al., 2007). Online 

responses based on user preferences can contribute to fnding the best routes (Saf et al., 2015). 

Although current navigation systems fnd the shortest path, pedestrians are interested in having 

a more accessible path than the shortest distance from origin to destination (Alfonzo, 2005). 

For example, a very narrow sidewalk in a recommended shortest path from routing services is 

inaccessible for people with mobility impairments. People with disabilities have di!erent physical 

conditions and demands, which must be considered in route navigation. The preferences and needs 

of individuals with disabilities may di!er from other pedestrians; a designed routing system should 

facilitate users to have a customized route. A system with greater accessibility for VRUs might 

increase their participation in social and outdoor activities. A range of sidewalk network factors 

can a!ect the preferences of users with disabilities. The related works of literature agreed on four 

factors that signifcantly infuenced users’ path choice, especially those in wheelchairs: width of 
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sidewalk segments, distance to the destination, slope, and surface type (Kasemsuppakorn et al., 

2015; Inada et al., 2014; Izumi et al., 2007). These studies assumed a static individual’s preference 

framework in calculating an optimal path to the destination, with no provision for en-route changes 

to preference. To summarize, this paper develops a new framework to fll the above gaps with 

the following contributions. First, the new trip planner accommodates the various road and trip 

characteristics to improve the safety and eÿciency of mobility for people with disabilities who 

walk and use transit in urban and suburban environments. Second, a hybrid adaptive routing 

system uses real-time route information and copes with unexpected sidewalk conditions en-route. 

Third, dynamic trip planning incorporates changing preferences and the interaction e!ect between 

sidewalk variables and weather conditions contributing to a path choice. The structure of the 

remainder of this paper is as follows: the literature review section provides a review of some 

related work for navigation and routing services, including VRU’s preferences. The method section 

outlines the adaptive, personalized routing systems for mobility-impaired users. The evaluation 

section includes the implementations results and analysis of the complexity of the developed model 

in various real-world scenarios. 

2 LITERATURE REVIEW 

Signifcant e!orts have been applied to studies for route planning and wayfnding for people with 

disabilities. A few studies attempted techniques that integrated personalized routing with static 

en-route user preferences, environmental barriers, and other factors such as sidewalk slope. 

2.1 Wayfnding based on network information and personal preferences 

Pedestrian navigation systems have considered users’ physical and mental conditions infuencing 

the choice of sidewalk path. Typically, Dijkstra’s algorithm was used on pedestrian networks 

with identifed non-traversable routes (Izumi et al., 2007). A pedestrian navigation system that 

incorporates experience-centric and computer-centric approaches provides a more robust solution; 

meeting individuals’ impairment demands (Karimi et al., 2014). Considering several sidewalk 

accessibility factors, a weighted approach was developed for scores of factors and impedance levels 

of di!erent sidewalk segments to fnd the optimal path choice (Inada et al., 2014). This is similar 

to the wheelchair routing technique called Absolute Restriction Method based on users’ prefer-
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ences(Kasemsuppakorn et al., 2015). Although this approach suggests the optimal path close to 

the user’s preferred route compared to the shortest path, it does not accommodate the importance 

of sidewalk variables changing by time and the interaction e!ect between the factors contribut-

ing to a path choice. The OpenStreetMap sidewalk database has been investigated considering 

mobility-impaired users to assess its suitability for navigating wheelchair users (Mobasheri et al., 

2017). While the study suggested the static sidewalk condition information from OpenStreetMap 

is acceptable, it does not consider how real-time information of sidewalk conditions can improve 

navigation for wheelchair users. 

2.2 Collaborative wayfnding approach 

Studies considering collaborative wayfnding for persons with disabilities are limited. A wayfnding 

client/server system called RouteChecker was designed to provide a personalized, collaborative 

route for VRUs (Völkel and Weber, 2008). Sidewalk network information was considered for a 

personalized route with a weighting approach to enable users with disabilities to set the importance 

of sidewalk factors (Hashemi and Karimi, 2017). The above studies on wayfnding for VRUs lack 

adaptiveness and often fail to address the personalized preferences of VRUs changing over time in 

estimating the users’ utilities. This research presents an adaptive and personalized routing model as a 

part of a mobility assistant program called Vulnerable Road Users’ Personalized Optimum Dynamic 

routing (VRUPOD). Table 1 highlights our developed VRU Mobility Framework compared to 

previous studies. 

Table 1: Model Category in VRU Mobility Framework 

Author (Year) Model Category 
Static Linear Interaction E!ect Dynamic Adaptive 

Izumi et al. (2007) 
Völkel and Weber (2008) 
Karimi et al. (2014) 
Inada et al. (2014) 
Kasemsuppakorn et al. (2015) 
Mobasheri et al. (2017) 
Hashemi and Karimi (2017) 
This research 

The static normative approach developed in the previous studies is only satisfactory when conditions 
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of intermediate nodes in the network are consistent, a constant rate of change occurs per each change 

of the link condition, and the same fxed routes are valid every day regardless of the user preference. 

Recalculating the static path without modeling other essential characteristics (discussed below) does 

not appropriately refect vulnerable road users’ personal preferences and value of time. There is a 

signifcant limitation for routing models with static parameters: First, the changes in preferences 

by time en-route must be considered. Second, the optimal sidewalk path’s determination should 

accommodate information of unexpected sidewalk conditions (e.g., non-traversable segments). The 

stochasticity and time of available information regarding the non-traversable segment’s location 

(crowd-sourced) must be considered at the current stage before the next decision is made. Such 

environments are di!erent from deterministic and static environments where sidewalk segment 

costs are fxed. In such cases, the standard shortest path algorithms such as Dijkstra and A* search 

are myopic and will fail to fnd the minimum cost path (Hall, 1986). Also, there is an ineÿciency 

to take a detour because it can not adapt to the environment’s changes. Third, the interaction 

e!ect between sidewalk variables such as the slope, surface type, and the weather condition can 

limit the accessibility of sidewalk segments and must be considered. A formulation of the joint 

utility function addresses the dynamic user preference-based metric and the interaction e!ect of 

the sidewalk segment factors. A reinforcement learning framework (Sutton and Barto, 1998; Mao 

and Shen, 2018) is adopted to compute the optimal policy accounting for the learning process 

of adaptively accommodating unexpected sidewalk conditions based on real-time crowd-sourced 

information. 

3 APPROACH AND METHOD 

The adaptive personalized routing considers the sidewalk network as a graph in which nodes 

represent sidewalk intersection and edges represent sidewalk segments. In the VRU mobility 

problem, we develop the cost function to address the preferences of the user changing by time and 

the interaction e!ect between sidewalk factors contributing to a path choice. 

3.1 Vulnerable Road User Mobility Assistance Platform 

The ongoing Vulnerable Road User Mobility Assistance Platform (VRUMAP) by (Owens and 

Miller, 2018) enables users to save personal information relevant to transportation needs (e.g., 

VRU-POD: Vulnerable Road Users-Personalized, Optimum, and Dynamic Routing 6 



       

stamina and ability to traverse uneven terrain). Figure 1 shows VRUMAP combining personal 

Weather 

Traffic 

Capabilities 

Transit Info 

Accessibility 

Road Slope 

VRUPODInput Destinations: 

• Broken sidewalks 

• Curbs without cuts 

• Busy roads no sidewalks 

• High elevation 

• Construction closures 

Figure 1: Vulnerable Road User Mobility Assistance Platform (VRUMAP) and the Role of 
VRUPOD 

information with publicly-available information about route nodes, elevation changes, weather, 

traÿc, multimodal transit, etc., along with crowd-sourced information about route impediments 

(e.g., construction), facilities, and rest opportunities to provide personalized route guidance for 

users. Currently, the app is being developed for both Android and iOS smartphone platforms 

using Android Studio and Swift, respectively, with supplemental coding using, Java, and database 

management software including local SQL databases and Firebase’s Cloud Firestore for crowd-

sourcing capabilities (Owens and Miller, 2018). Maps are sourced from the open-source platform 

Mapbox, with routing being implemented using custom code. 

As shown in Figure 2, routes are developed using a series of location nodes, with weights for seg-

ments between nodes being associated with positive or negative valences depending on information 

present in the public and crowd-sourced datasets combined with individual needs and capabili-

ties. For example, a segment with a steep elevation change or stairs would have a strong negative 

weighting for a person who uses a wheelchair, while crowd reported accessible restroom facilities 

may have a positive weighting if the user prefers more frequent restroom access. In this paper, 

we focus on the demonstration of the VRUPOD method, tested in various simulated environments, 

while VRUMAP is still under development phase. Currently, ongoing visual recognition work in 

VRUMAP automatically recognizes traÿc warning signs and tracks the edges of the sidewalks 

through a machine-learning algorithm. These images show the recognized signboards such as the 

yield sign, construction sign, detour sign, and traÿc cone, which are possible obstacles for wheel-
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Figure 2: Prototype Crowd-Source Interface of VRU 

chair users detected in real-time. While this paper focuses on presenting the VRUPOD method, the 

full wayfnding capability will be possible by incorporating visual recognition works. 

3.2 Sidewalk accessibility factor selection 

In this paper, some common factors used for individuals with disabilities routing are described in 

Table 2. The accessibility of each pedestrian segment for users with disabilities in this paper is 

defned by fve parameters: width, length, slope, sidewalk surface type, and weather condition. The 

width, length, slope, and surface type factors come from (201) and have been used in (Hashemi 

and Karimi, 2017), (Kasemsuppakorn et al., 2015), and (Sobek and Miller, 2006). Additionally, 

inclement weather conditions may a!ect the traversability of sidewalk segment when applied to the 

slope and surface parameters of a sidewalk (Cooper et al., 2012). The ADA standard determines 

acceptable sidewalk parameters as follows: the width of the sidewalk should have minimum 

clearance at 3 feet. Any sidewalk width less than 3 feet does not meet the minimum requirement for 

the mobility of users with disabilities. However, sidewalks can be constructed wider than this. The 

length of a sidewalk section is the distance between the start node and end node. Sidewalk surfaces 

must be stable, solid, and resistant to slide. Materials that are often used in sidewalk surfaces are 
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concrete, asphalt, stone, brick, and gravel. The most common form of sidewalk material in the 

United States is concrete, the second material is asphalt (Huber et al., 2013). 

Table 2: Sidewalk Parameter Selection Criteria for VRU 

Sobek 
and Miller 
(2006) 

Kasemsuppakorn 
and Karimi (2009) 

Kasemsuppakorn 
et al. (2015) 

Hashemi 
and Karimi 
(2017) 

This 
research 

Width 

Length 

Slopes 

Steps 

Surface 
Type 

Surface 
Condition 

Sidewalk 
Traÿc 

Curb Cut 
Feature 

Ramps 
Feature 

Uneven 
Surface 

Weather 
condition 

Each sidewalk parameter (x) is normalized (xb), and the weight of each factor (x) is calculated 

regarding wheelchair user choices and preferences by using the Analytic Hierarchy Process (AHP) 

method (Hashemi and Karimi, 2017). An overview of the VRUPOD system is described in Figure 

3. 

In this paper, we model the VRU mobility problem as the adaptive routing problem with real-

time information of the network and present the formulation as a Markov decision process (MDP) 

(Rambha et al., 2016). A Q-learning framework (Sutton and Barto, 1998) is provided to solve 

the optimal routing strategy. A MDP models a sequential decision-making problem with fve 

elements: decision epochs, a set of possible world states s 2 S, a set of possible actions a 2 A, 

reward function, and state transition probability. A policy is a function !(s) : S −! A that maps 

VRU-POD: Vulnerable Road Users-Personalized, Optimum, and Dynamic Routing 9 



Static Sidewalk Score of Sidewalk 

Factors  Factors 

Determine the 

preference of the 

user by AHP 

Calculate weight 

of each link from 

cost function 

VRUPOD 

routing 

Optimal 

route 

       

Figure 3: A VRUPOD Model for Vulnerable Road Users 

the current state to an action, and optimal policy is the best possible action. The MDP can be solved 

using a Dynamic Programming method for problems where it is possible to develop the environment 

with the exact state transition probability and rewards. However, in most real-world problems, such 

as integrating real-time crowd-sourced information on sidewalk segments’ traversability status, we 

cannot precisely develop the environment. In such cases, the Q-Learning algorithm can solve 

the MDP, where the rewards and transition functions are unknown. The Q-learning algorithm 

investigates all likelihoods of state-action pairs and estimates the long-term reward received by 

applying an action in a state. 

Consider the sidewalk network as a graph G=(N,E) where n 2 N is the set of nodes and e 2 E is 

the set of edges. A VRU can move from n to  n0 if an edge connects the two nodes. The objective 

of this work is to fnd the path or strategy that minimizes the total cost in a given origin-destination 

pair (no,nd). Equation 1 is used to calculate the dynamic and personalized cost C(e)(t) of each 

sidewalk segment based on parameters that defne sidewalk segment accessibility for VRU. 

C(e)(t) = Ww(t)Sw(e) +Wl(t)Sl(e) +Ws(t)Ss(e)Swc(e) +Wsf (t)Ssf(e)Swc(e), (1) 

where Sw(e), Sl(e), Ss(e), Swc(e), Ssf(e) are scores for width, length, slope, weather condition, and 

surface type of each segment used instead of actual values which are di!erent in range. In order 

to obtain the score of each factor the actual values are normalized using Equation 2. Let x be the 

actual value of each parameter, S (normalized) or the score of the factors we calculate as: 
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x− min(x)
S = (2)

max(x) − min(x) 

Ww, Wl, Ws, Wsf are weights for width, length, slope and surface type. The values of weights 

for each parameter are calculated using the AHP method. In the AHP method the summation of 

weights is equal to one (Equation 3). 

Ww(t) +  Wl(t) +  Ws(t) +  Wsf (t) = 1  (3) 

Traversability status of each sidewalk segment at time t, given by the traversable segment status 
" 

vector is H(t)= h1(t), h2(t), h3(t), . . . ., h|E|(t) , based on real-time crowd-sourced information 

from VRUMAP. 

Binary classifcation is used to determine the traversability of the sidewalk segments. We impose a 

threshold "(e) for each sidewalk segment to determine whether the segment is traversable or not. If 

" (e), updated real-time by crowd-sourced information (e.g., information from VRUMAP) is greater 

than or equal to the threshold value, then the sidewalk segment is considered non-traversable (1), 

otherwise the sidewalk segment is considered traversable (0). Other studies have successfully 

followed a similar approach(Chavez-Garcia et al., 2018; Wang et al., 2009; Hewitt et al., 2017; 

Papadakis, 2013). A considerable reduction in computational complexity is observed when using 

binary classifcation, allowing for a more detailed analysis of terrain portions of more interest 

(Papadakis, 2013). 

8 
< 1 

h(e) = : 0 

non − traversable 

traversable 

if " (e) ≥ 4 

if "(e) < 4 

In this sequential decision-making framework, the states s 2 S of the VRU at each decision stage 

k are defned as s = (nk, tk, H(tk)). At the current location nk 6= nd (nd is the destination node), 

the pedestrian must decide on which adjacent node to travel. The information available at this 

stage includes the current time tk and the traversable segment vector H(tk). There is a tradeo! 

between the number of segments to monitor and resulting projection accuracy by monitoring two 

segments ahead of the VRU’s current location. If E1 and E2 are the set of frst and second 

successor segments respectively from the VRU’s current location, then a state sk is defned as 
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⇣ ⌘ 
[E2 

[E2 
sk = nk, tk, H

E1 
(tk) where HE1 

represent the traversability statuses of the set of frst 

and second successor segments from the VRU’s current location. The goal is to determine the 

optimal policy, ! ⇤ (sk), showing which segment the pedestrian must select. In this paper, the 

expected return starting at s, taking action a and following ! is Q!(s, a). The optimal policy ! ⇤(s) 

for s 2 S is thus given by: 

! ⇤(s) = argmaxQ⇤(s, a) (4) 
a 

3.3 Reinforcement learning 

We adopt Q-learning to obtain the optimal policy. At the current stage of the decision process, the 

agent will receive a reward; the sidewalk segment’s estimated cost C (n, n0) comprising of the sum 

of C(e)(t) and a fxed penalty (0 if traversable and very large number if non-traversable) defned 

by the traversability status of the segment. As discussed, the cost function C(e)(t) accommodates 

the time-varying preferences of the VRU and the interaction e!ects between the sidewalk factors 

contributing to a path choice. Utilizing its current knowledge of the environment (the estimated 

Q-function so far), the agent will choose the state’s best action while accommodating exploration 

through the Boltzmann exploration strategy. Using the Boltzmann exploration strategy, the relative 

Q-values weigh the probabilities of taking di!erent actions. We highlight that the system’s state 

at this stage includes the traversability status of the frst and second successor sidewalk segments 

from the agent’s current location. This component of the state model allows us to integrate the 

crowd-sourced information for sidewalk segment conditions, as shown in Figure 2. The new action 

will allow the environment to change into a new state, with the agent receiving a new reward. The 

state-action pair value is then revised to consider the response. The revision rule in each state is: 

h i 
Q(s, a) = (1− #)Q(s, a) + # r 0 + $ maxQ (s 0 , a) (5) 

a 

where (s, a) is state-action pair, # the learning rate, r0 is the reward that agent will receive and turn 

into new state s0, and $ is a discount factor. The adaptive personalized routing for the VRU mobility 

problem can then be determined by using the fnal Q-table after a suÿcient number of iterations 

and convergence, providing the optimal action to take at each possible state. The VRUPOD model 

is shown in Algorithm 1, with additional details provided in the evaluation section. 
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Algorithm 1 Q-learning for VRUPOD method 

Let ! = # [−C (n, n0) + maxa0 Q (s0, a0)] 
1: Input: G = (N, E), destination nd, learning rate # 
2: Output Q-function for VRUPOD to nd 

3: Initialize: Q(s, a) 0, 8s 2 S, 8a 2 A(s) 
4: for each way fnding do 

5: s initial state 
6: while s[0] =6 nd do 

7: Select node a 2 A(s) 
8: Travel to node n0 = a 
9: Perceive new state s0 = (n0, t0, H  (t0)) 

10: Accept cost of segment C (n, n0) 
11: Q(s, a) (1 − #)Q(s, a) +  !  
12: s s0 

13: end while 

14: end for 

15: Return Q 

3.4 Analytic Hierarchical Process (AHP) 

We use the AHP to decide with multiple objectives and criteria by determining how important a 

parameter or object is than another. In the developed method, weights are obtained for each factor 

of sidewalk using a 4 ⇥ 4 matrix A which is the pairwise comparison matrix. Each cell of matrix 

(aij ) in row i and column j denote how much more important factor i is than factor j. 

10 

A = 

BBBBBB@ 

1 a01 a02 a03 

1/a10 1 a12 a13 

1/a20 1/a21 1 a23 

1/a30 1/a31 1/a32 1 

CCCCCCA 
(6) 

The importance of factors is assessed on a range from 1-9 where 1 means parameter i and j are of 

equal importance, and 9 means factor i is far more important than factor j. If factor 1 is fve times 

more important than factor 2, then factor 2 is one ffth as important as factor 1. 

Generally, n(n − 1)/2 comparisons are required in which diagonal elements are equal to 1, and 

the other elements will simply be the reciprocals of the earlier comparisons. The AHP method 

uses a comparison matrix, assigns a weight to each pedestrian parameter, and computes the weight 

of each factor based on the preferences of users. To calculate the weight of each parameter for 
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individual VRUs in this paper a survey dataset based on the ADA standard is used Kasemsuppakorn 

et al. (2015). Each survey question includes a comparison of the importance of two parameters. 

The importance of each parameter is defned using fve levels: extremely, very strongly, strongly, 

moderately and no di!erence. According to the user’s survey responses, a binary comparison 

matrix can be built. The weights that are obtained from the AHP method are used in the developed 

cost function to determine the weight of each segment of the sidewalk. In the developed VRUPOD 

method a sidewalk width that is less than ADA standards is considered as level 0 and is pruned 

from the network. The fve surface types are ranked based on feld surveys where level 1 indicates 

the best and most accessible, and level 5 indicates the worst condition. 

8 
>>>>>>>>>< 
>>>>>>>>>: 

Concrete 1 

Asphalt 2 

Surface Type = Brick 3 

Cobblestone 4 

Gravel 5 

Weather condition ranges from level 1 to 5, where level 1 (sunny) indicates the best weather condition 

and level 5 (Extreme snow) the worst weather condition to accurately refect the interaction e!ects 

between the surface type and slope with the di!erent severity of the weather. 

8 
>>>>>>>>>< 
>>>>>>>>>: 

Sunny 1 

Moderate Rain 2 

Weather Condition = Moderate Snow 3 

Extreme Rain 4 

Extreme Snow 5 

This paper presents a numerical example for sunny, rainy, and snowy in the moderate cases of the 

weather condition for illustrative purposes. 

4 DATA PREPARATION 

To evaluate the usefulness of the developed method and calculate a cost for each sidewalk segment, 

the Boston sidewalk inventory is used, which includes width, length, slope, and sidewalk surface 
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type. Table 3 shows a sample database characteristic of the Boston sidewalk inventory. SWD_ID 

indicates a unique ID associated with each sidewalk segment, Width indicates the average width of 

the sidewalk, Length shows the length of the sidewalk, Slope shows average cross slope (perpendic-

ular to the path of travel) in degrees, Mat shows primary sidewalk material (CC- Cement Concrete, 

BC - Bituminous Concrete). The weather condition information is assumed to be provided through 

online web-based data set such as Open Weather Map. We assume that VRUs experience the same 

and consistent weather condition throughout his/her short trip. For instance, if the weather is sunny 

at the origin, it will be sunny during the trip and at the destination. 

Table 3: Sample Boston Sidewalk Inventory Database 

SWD_ID Width Length Slope Mat 

15739 4 931.9775324 3.9 BC 

5439 8 282.649369 3.8 BC 

4777 17.5 1662.671837 0.8 BC 

4778 17 1561.205981 1.8 BC 

4779 18.5 1791.473169 0.7 BC 

4949 15.2 1416.268866 2 CC 

4948 15.5 1226.37165 1.5 CC 

5476 12 312.5817051 3.9 CC 

5475 14 306.143638 3.9 CC 

4.1 Simulated Participants 

The VRU database that is simulated in this paper includes fve participants who are new in the 

environment of study (Kasemsuppakorn et al., 2015). This includes the dataset collected through 

a feld survey for fve participants with one female and four males between 20 to 40 years old. The 

demographics of the participants in this dataset are age, gender, disability type, wheelchair make 

and model, most concern parameter, and their ftness level. The level of ftness scales from one 

to ten and determines the VRUs’ degree of tiredness and endurance in di!erent sidewalks slopes. 

The four male participants have a perceived ftness level greater than 5 while the female has a low 

perceived ftness level (level 2). Based on the sidewalk inventory information and preferences of 

the user, the VRUPOD path planning model fnds the optimal policy and chooses the best route for 

each user. 
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5 RESULTS AND DISCUSSIONS 

The performance of the VRUPOD method is highlighted by comparing against the following 

traditional models and their objectives. 

Static Minimum Cost (SMC): By appropriately adjusting the VRU mobility problem, we use the 

Dijkstra algorithm to minimize the path cost while the user’s preferences are set at the beginning 

of the trip. 

Dynamic Minimum Cost (DMC): By appropriately adjusting the VRU mobility problem, we use 

the Dijkstra algorithm to minimize the time-dependent path cost by varying user preference at 

predefned trip duration or time steps. The DMC model will recalculate the current network’s 

shortest path and recommend the new path to the user when there is a non-traversable segment 

en-route from the origin to the destination. 

Shortest Path (SP): Use the Dijkstra algorithm to fnd the minimum distance from the origin to the 

destination. 

Non-traversable link 

Figure 4: A Real-World Depiction of the Sidewalk Network used for Evaluating the Developed 
Model (Source: Google Maps) 
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A case study is carried out on a simulated mid-size network (⇡ 1000ft⇥ 600ft) represented as an 

8 ⇥ 8 grid (see Figure 4) and in a time frame [0-30 minutes] of user’s trip and fve time steps. The 

preferences of users may change in each time step in the DMC and VRUPOD method. There are 81 

nodes and 144 segments in the case study network, and we assume that we have complete real-time 

information on all the segments. In the case study, the sidewalk network is considered as a graph 

in which nodes represent sidewalk connections and edges represent sidewalk segments, the cost 

of each segment calculated according to the function C(e)(t). The location of the non-traversable 

segment is randomly changed for all the scenarios between the runs in the simulation. If there is 

a time window [0-30 minutes] and a stage represented by a unit of time, then the decisions of a 

traveler who is in the frst stage and encounters an unexpected construction can be di!erent from 

another traveler who is in the ffth stage and encounters an unexpected construction. As the user 

approaches the destination, the decisions of the user can be varied to refect the traveler’s preference 

change and a desire to arrive at the destination more quickly instead of taking detours based on 

their initial preferences. For instance, a traveler who has covered about 70 percent of a trip may, 

because of tiredness and other considerations want to reach the destination with minimal detours 

as possible. This can be accomplished by varying the weights assigned to the parameters such as 

length. 

Figure 5 shows an illustrative example of a route suggestion that is not accessible for people with 

disabilities. The line (blue) shows the original static route that is the shortest path from A to the 

transit stop, the line (red) shows the detour option 1 with a high slope when there is a non-traversable 

segment in the VRU’s route in rainy weather. The line (green) shows detour option 2 that takes 

a long detour with a walking shelter to avoid the rain. VRUPOD will guide VRUs toward option 

2, by fnding the tradeo! between taking a long detour (exploration) and taking the originally 

known route (exploitation). While the advantage of VRUPOD will depend on the quality and when 

the information concerning unexpected events are known (crowd-sourced), this paper focuses on 

demonstrating a new VRU mobility framework by formulating the VRUPOD. 
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• Original Route 

1. High slope 

1. Rainy 

2. Walkable 

B 
A 

Figure 5: An Illustrative Example of the Advantage of the VRUPOD Considering Accessibility 

The results of three scenarios are presented for sunny, rainy, and snowy weather conditions. For 

each scenario, a path cost comparison is made for SMC, DMC, and VRUPOD method to assess the 

performance. In our developed framework for sidewalk segment cost, the weather score infuences 

the segment’s cost through interaction with the surface type parameter. In e!ect, slick sidewalk 

surfaces (due to rain and snow) will signifcantly increase the segment’s overall cost, thus impacting 

VRUs optimal route choice. 

Figure 6 , 7 and 8 show a comparison of four models for the same origin-destination (OD) and 

obstacle location in sunny, rainy and snowy weather conditions. A path cost comparison is done for 

SMC, DMC and VRUPOD to assess the performance. As mentioned earlier, weather conditions 

can a!ect the accessibility of the sidewalk. Slick sidewalk surfaces due to rain and snow greatly 

impact wheelchair users. The preference for the sidewalk slope parameter is di!erent for sunny, 

rainy and snowy weather. 
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(a) Path graph for four models (b) Cost graph for three models 

Figure 6: Comparison of Four Models for Same OD and Obstacle Location and Cost of Three 
Models by Time Step in a Sunny Weather 

(a) Path graph for four models (b) Cost graph for three models 

Figure 7: Comparison of Four Models for Same OD and Obstacle Location and Cost of Three 
Models by Time Step in a Rainy Weather 
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(a) Path graph for four models (b) Cost graph for three models 

Figure 8: Comparison of Four Models for Same OD and Obstacle Location and Cost of Three 
Models by Time Step in a Snowy Weather 

In sunny weather, the sidewalk is not slick so VRUs can traverse a higher slope while a normal 

or average slope will be preferred for rainy and snowy conditions. Path cost for the SP is the 

same in sunny, rainy and snowy weather. Looking at each time step, VRUPOD has less steep 

increase in the cost, most of them occurred during time step 1-2, where the location corresponding 

to the non-traversable link resulting in increasing the cost of the path. Cost evaluation reveals the 

superiority of the VRUPOD to the other models. VRUPOD has a lower total cost when compared 

with the SMC and the DMC. This can be attributed to the fact that the VRUPOD policy is based on 

comparing Q values of the nearby segments to decide which way to go. Ultimately, integrating the 

two successor segments from the VRU’s current location into the state model defnition allows the 

Q-function to perceive the e!ect of their decision much early to decide the best segment to select at 

the current stage of the trip. Cost evaluation reveals the superiority of the VRUPOD over the other 

models. VRUPOD has a lower total cost averaging 12% and 5% less compared with the SMC and 

the DMC. 

To further investigate the VRUPOD path selection we change the location of the origin and des-

tination, while keeping the obstacle location and network size the same as Figure 6 and compare 
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(a) Path graph for four models (b) Cost graph for three models 

Figure 9: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of 
Three Models by Time Step in a Sunny Weather 

(a) Path graph for four models (b) Cost graph for three models 

Figure 10: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of 
Three Models by Time Step in a Rainy Weather 
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(a) Path graph for four models (b) Cost graph for three models 

Figure 11: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of 
Three Models by Time Step in a Snowy Weather 

with the three di!erent methods (see Figures 9, 10 and 11). The results for sunny, rainy, and snowy 

weather show that VRUPOD fnds the most optimal routes with minimum cost, averaging 15% and 

7% less total cost compared to SMC and DMC. Looking at each time step, VRUPOD has a less 

steep increase in the cost, mostly occurring during time steps 1-2, where the location corresponding 

to the non-traversable segment results in increasing the cost of the path. The Q function is directly 

updated based on the information gathered by exploring all possible scenarios in the pedestrian 

network. The best routing policy can then be determined from the Q function. 

Lastly, in Figure 14 (scenario 3), we change the obstacle location later in VRU’s trip in sunny, 

rainy, and snowy weather conditions and compare the path and cost of the VRUPOD method with 

the other three methods (plots for sunny and rainy omitted). The developed VRUPOD method 

directs the user to a route with a lower total cost, averaging 10% and 5% less total cost compared to 

SMC and DMC. Looking at each time step, VRUPOD has a less steep increase in the cost, mostly 

occurring during time steps 3-4, where the location corresponding to the non-traversable segment 

increases the cost of the path. 

As discussed above, this can be attributed to the fact that the VRUPOD policy is based on comparing 
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(a) Path graph for four models (b) Cost graph for three models 

Figure 12: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of 
Three Models by Time Step in a Sunny Weather 

(a) Path graph for four models (b) Cost graph for three models 

Figure 13: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of 
Three Models by Time Step in a Rainy Weather 
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(a) Path graph for four models (b) Cost graph for three models 

Figure 14: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of 
Three Models by Time Step in a Snowy Weather 

Q values of the nearby segments to decide which way to go. The Q-values are obtained at 

convergence, having accommodated all possible scenarios of obstacle locations. In all three 

scenarios, the VRUPOD solution for sunny weather consistently reported a lower total cost than 

VRUPOD solutions for rainy and snowy weather conditions. This is expected since the increase in 

the cost of sidewalk segments during sunny weather conditions is lower compared to the sidewalk 

segment cost during rainy and snowy conditions. In general, this a!ects the accessibility of the 

sidewalk, impacting the optimal route choice and the total cost to get to the destination. 

Table 4 shows the summary of results estimated for the di!erent weather conditions, origin-

destination location, and obstacle location (including the results from the omitted plots). The 

percentage improvement is estimated for VRUPOD compared to SMC (A%) and DMC (B%), 

respectively, and shown in the table as A–B. Some possible design considerations and architecture 

have been proposed to help the fnal development of a personalized navigation system for wheelchair 

users (Ding et al., 2007). While the work (Ding et al., 2007) proposed using the standard shortest 

path algorithms such as Dijkstra, equivalent to the SMC and DMC models, this approach will not 

adequately accommodate the stochastic nature of unexpected non-traversable segments. Our results 
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Table 4: Summary of results for di!erent scenarios 

OBSTACLE METHOD 

COND. O −! D LOCATION SMC DMC VRUPOD % AVG IMP. 

Sunny (0, 0) −! (8, 8) 

(0, 1) −! (7, 8) 

(0, 0) −! (8, 8) 

(2, 2) ! (3, 2) 

(2, 2) ! (3, 2) 

(4, 6) ! (4, 7) 

78.7 

73.6 

75.2 

71.5 

66.0 

70.5 

66.0 

60.0 

67.4 

16–7 

18–9 

10–4 

Rainy (0, 0) −! (8, 8) 

(0, 1) −! (7, 8) 

(0, 0) −! (8, 8) 

(2, 2) ! (3, 2) 

(2, 2) ! (3, 2) 

(4, 6) ! (4, 7) 

79.6 

74.8 

78.2 

75.4 

69.0 

72.5 

71.3 

64.0 

69.1 

10–5 

14–7 

12–5 

Snowy (0, 0) −! (8, 8) 

(0, 1) −! (7, 8) 

(0, 0) −! (8, 8) 

(2, 2) ! (3, 2) 

(2, 2) ! (3, 2) 

(4, 6) ! (4, 7) 

82.6 

81.4 

80.1 

77.8 

74.4 

77.8 

73.4 

69.3 

71.5 

11–5 

15–7 

11–8 

in Table 4 show that VRUPOD, which integrates unexpected non-traversable segments location 

information, provides considerable improvement in performance than the SMC and DMC models. 

A number of trips are conducted with the starting node (0,0) as the origin to the ending node (8,8) 

as the destination to show how adaptive routing path suggestions are a!ected by di!erent scenarios 

of user preferences. We use survey records (Kasemsuppakorn et al., 2015) of the preferences of 

four distinctive users and estimate each sidewalk parameter’s weight using the AHP approach. 

As the trip progresses, we gradually increase the weight for sidewalk length while proportionally 

decreasing the weight for the other sidewalk parameters (e.g., slope and surface type). We use 

this approach to simulate a realistic time-varying preference. To summarize, the ratings (0-10 

scale) of the four user’s preference data are described as follows; User1: High rating for slope and 

surface type compared to width and distance; User2: High rating for width and distance of sidewalk 

compared to slope and surface type; User3: High rating for surface type and width compared to 

distance and slope. User4: High rating for sidewalk distance compared to width, slope, and surface 

type. 

In Figure 15, the results show the di!erent path options that are suggested by the VRUPOD method. 

In general, the total score for any given parameter (e.g., sidewalk width, slope, etc.) for the optimal 
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Figure 15: Shows How the Preference of Users A!ects the Path Suggestion from the VRUPOD 
Method 

path directly correlates with the user’s preference ratings. For instance, the sidewalk segments 

forming the path recommended for User1 will have more segments with a lower elevation than for 

User2. 

We conduct a Monte Carlo simulation with 100 scenarios of origin-destination and obstacles 

randomly placed at various locations in the grid to evaluate the robustness of the developed model. 

We summarize the results for estimated path cost for VRUPOD and DMC through a boxplot. Figure 

16 shows a lower mean cost for VRUPOD than DMC. We observe a similar interquartile range for 

VRUPOD and DMC with a slightly narrow range for VRUPOD than DMC. The policies generated 

by VRUPOD (q-learning model) inherently accommodates the e!ect of random obstacle location 

and thus improves its performance compared to the DMC. 

Furthermore, we assess the total average score for parameters such as sidewalk surface type and 

average slope for the optimal path from the VRUPOD method. The calculated quantities from the 

VRUPOD method are compared with the shortest path in two tests. In the frst test, sidewalk surface 
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Figure 16: Boxplot of Monte Carlo Simulation Results for Path Cost Based on Routing Policies 
from the VRUPOD Method and DMC Method 

type is the most critical parameter; the lower the sidewalk surface type score, the better the sidewalk 

path. In the second test, the sidewalk slope is the most important factor; the lower the sidewalk 

slope score, the better the sidewalk path. Figures 17 and 18 represent the comparison graphs: 

average surface type and average slope, respectively. As shown in Figure 17, 85.71% of routes 

recommended by the VRUPOD method have the lowest average sidewalk surface type score. In the 

second test, as shown in Figure 18, 71.42% of routes recommended by VRUPOD have the lowest 

average sidewalk slope score. The observed improvement is expected since VRUPOD considers 

the parameters’ weight and fnds the path with a minimum expected cost, refecting those weights 

(preferences) rather than the shortest path. This observation supports the results from Figure 15, 

suggesting that the optimal path directly correlates with the user’s preference ratings. 
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Figure 17: The Average Sidewalk Surface Type Score Comparison Between VRUPOD and Shortest 
Path 

Figure 18: The Average Sidewalk Slope Score Comparison Between VRUPOD and Shortest Path 

Finally, a quantitative assessment of the computational complexity of Algorithm 1 is provided for 

pedestrian networks of various sizes. The mean and standard deviation of the CPU time for 5 

experiments is reported. The processor specifcation used for implementation is 2.9 GHz 6-Core 

Intel Core i9, 32 GB RAM. 
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Table 5: Quantitative assessment of the computational complexity of VRUPOD 

Pedestrian network size CPU time (s) 
(nodes, edges). (mean, std) 

(25 , 41) (9005.3, 502.7) 

(81, 144) (10980.9, 1770.1) 

(121, 220) (13007.1, 1997.5) 

(24725, 20881) (–, –) 

The computational time for VRUPOD increases with the increase in size of the pedestrian network. 

The system state space is a subset of the Cartesian product of the number of nodes, the time 

periods of interest, and the number of segments being monitored from the VRU’s location. Thus, 

the network size is one of the essential considerations that a!ect the size of state space. For 

cases with large state spaces, this leads to a high computational time since the state space must be 

explored to determine the optimal action at each state. This will make VRUPOD unattractive for 

real-world adoption. However, we make a case for the applicability and scalability of VRUPOD. 

Most pedestrians and VRU are limited by an acceptable total walking distance/time Atash (1994). 

Therefore, we can restrict the pedestrian network size utilized in VRUPOD for each routing decision. 

One approach to restricting the pedestrian network size will be to utilize the shortest distance from 

the VRU’s origin to destination as a radius for generating a circular spatial region. The center for 

the circular spatial region will be the VRU’s origin. The pedestrian network in this region can 

then be generated and utilized in Algorithm 1. By restricting the pedestrian network size, we can 

overcome the performance constraints resulting from large pedestrian networks. 

6 CONCLUSIONS AND RECOMMENDATIONS 

Prior work has focused on wayfnding with static parameters related to the sidewalk for people with 

disabilities, however, wayfnding with static parameters might be impractical in real world situations. 

Routing with static parameters is only applicable when the same fxed route and the same conditions 

of the route are valid every day. This paper provides a VRUPOD model incorporating dynamic 

parameters in wayfnding for VRUs. The method developed in this paper uses the information that 
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is collected from traveling on the sidewalk network and updates the best decision values. Thus if 

an unexpected event happens on the sidewalk the VRU can reroute. Individuals with disabilities 

also can explore unfamiliar places through the VRUPOD method. The optimal policies based on 

VRUPOD fnd the most accessible route adaptively. The technique is a personalized wayfnding 

since users with disabilities choose the importance of parameters a!ecting the sidewalk by the AHP 

method. A case study is carried out on a mid-size network to show the performance of di!erent 

methods in recommending the path to individuals with disabilities. VRUPOD outperforms the 

shortest path, static minimum cost and dynamic minimum cost methods in terms of suggested path 

cost. VRUPOD recommends an accessible path incorporating unexpected events. The average 

sidewalk surface type score and average slope score for routes recommended by VRUPOD are the 

lowest as well. For future work, we will investigate a scalable heuristic approach to overcome 

the limitation of reinforcement learning regarding the size of the sidewalk network to provide 

computationally eÿcient solutions. Also the extension of this research is looking at integrating 

data from machine vision with mounted cameras on wheelchairs, which will clearly identify the 

surface condition. 
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Figure 19: (Boston sidewalk inventory data. (Source: https://data.boston.gov/dataset/ 
sidewalk-inventory) 
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	EXECUTIVE SUMMARY 
	This research presents an adaptive and personalized routing model that enables individuals with disabilities to save their route preferences to a mobility assistant platform. The proactive approach based on anticipated user need accommodates vulnerable road users’ personalized optimum dynamic routing rather than a reactive approach passively awaiting input. Most of the currently available trip planners target the general public’s use of simpler route options prioritized based on static road characteristics.
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	1 INTRODUCTION 
	1 INTRODUCTION 
	Mobility is an essential component of quality of life. Vulnerable Road Users (VRUs), here defned as individuals with mobility issues such as elderly persons or wheelchair users, recognize mobility is demanding and may be discouraged from participating in social activities. In novel environments, and even familiar ones, VRUs encounter a range of obstacles impeding easy navigation and access to locations (Ding et al., 2007). Existing designs of built environments and public transportation systems do not entir
	In recent years, the usage of online navigation systems has increased (Ding et al., 2007). Online responses based on user preferences can contribute to fnding the best routes (Saf et al., 2015). Although current navigation systems fnd the shortest path, pedestrians are interested in having a more accessible path than the shortest distance from origin to destination (Alfonzo, 2005). For example, a very narrow sidewalk in a recommended shortest path from routing services is inaccessible for people with mobili
	can a!ect the preferences of users with disabilities. The related works of literature agreed on four factors that signifcantly infuenced users’ path choice, especially those in wheelchairs: width of 
	Figure
	sidewalk segments, distance to the destination, slope, and surface type (Kasemsuppakorn et al., 2015; Inada et al., 2014; Izumi et al., 2007). These studies assumed a static individual’s preference framework in calculating an optimal path to the destination, with no provision for en-route changes to preference. To summarize, this paper develops a new framework to fll the above gaps with the following contributions. First, the new trip planner accommodates the various road and trip characteristics to improve
	remainder of this paper is as follows: the literature review section provides a review of some related work for navigation and routing services, including VRU’s preferences. The method section outlines the adaptive, personalized routing systems for mobility-impaired users. The evaluation section includes the implementations results and analysis of the complexity of the developed model in various real-world scenarios. 

	2 LITERATURE REVIEW 
	2 LITERATURE REVIEW 
	Signifcant e!orts have been applied to studies for route planning and wayfnding for people with disabilities. A few studies attempted techniques that integrated personalized routing with static en-route user preferences, environmental barriers, and other factors such as sidewalk slope. 
	2.1 Wayfnding based on network information and personal preferences 
	2.1 Wayfnding based on network information and personal preferences 
	Pedestrian navigation systems have considered users’ physical and mental conditions infuencing the choice of sidewalk path. Typically, Dijkstra’s algorithm was used on pedestrian networks with identifed non-traversable routes (Izumi et al., 2007). A pedestrian navigation system that incorporates experience-centric and computer-centric approaches provides a more robust solution; meeting individuals’ impairment demands (Karimi et al., 2014). Considering several sidewalk accessibility factors, a weighted appro
	Pedestrian navigation systems have considered users’ physical and mental conditions infuencing the choice of sidewalk path. Typically, Dijkstra’s algorithm was used on pedestrian networks with identifed non-traversable routes (Izumi et al., 2007). A pedestrian navigation system that incorporates experience-centric and computer-centric approaches provides a more robust solution; meeting individuals’ impairment demands (Karimi et al., 2014). Considering several sidewalk accessibility factors, a weighted appro
	ences(Kasemsuppakorn et al., 2015). Although this approach suggests the optimal path close to the user’s preferred route compared to the shortest path, it does not accommodate the importance of sidewalk variables changing by time and the interaction e!ect between the factors contributing to a path choice. The OpenStreetMap sidewalk database has been investigated considering mobility-impaired users to assess its suitability for navigating wheelchair users (Mobasheri et al., 2017). While the study suggested t
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	2.2 Collaborative wayfnding approach 
	2.2 Collaborative wayfnding approach 
	Studies considering collaborative wayfnding for persons with disabilities are limited. A wayfnding client/server system called RouteChecker was designed to provide a personalized, collaborative route for VRUs (Völkel and Weber, 2008). Sidewalk network information was considered for a personalized route with a weighting approach to enable users with disabilities to set the importance of sidewalk factors (Hashemi and Karimi, 2017). The above studies on wayfnding for VRUs lack adaptiveness and often fail to ad
	Table 1: Model Category in VRU Mobility Framework 
	Author (Year) 
	Author (Year) 
	Author (Year) 
	Model Category 
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	The static normative approach developed in the previous studies is only satisfactory when conditions 
	Figure
	of intermediate nodes in the network are consistent, a constant rate of change occurs per each change of the link condition, and the same fxed routes are valid every day regardless of the user preference. Recalculating the static path without modeling other essential characteristics (discussed below) does not appropriately refect vulnerable road users’ personal preferences and value of time. There is a signifcant limitation for routing models with static parameters: First, the changes in preferences by time


	3 APPROACH AND METHOD 
	3 APPROACH AND METHOD 
	The adaptive personalized routing considers the sidewalk network as a graph in which nodes represent sidewalk intersection and edges represent sidewalk segments. In the VRU mobility problem, we develop the cost function to address the preferences of the user changing by time and the interaction e!ect between sidewalk factors contributing to a path choice. 
	3.1 Vulnerable Road User Mobility Assistance Platform 
	3.1 Vulnerable Road User Mobility Assistance Platform 
	The ongoing Vulnerable Road User Mobility Assistance Platform (VRUMAP) by (Owens and Miller, 2018) enables users to save personal information relevant to transportation needs (e.g., 
	Figure
	stamina and ability to traverse uneven terrain). Figure 1 shows VRUMAP combining personal 
	Weather Traffic Capabilities Transit Info Accessibility Road Slope VRUPODInput Destinations: • Broken sidewalks • Curbs without cuts • Busy roads no sidewalks • High elevation • Construction closures 
	Figure 1: Vulnerable Road User Mobility Assistance Platform (VRUMAP) and the Role of VRUPOD 
	information with publicly-available information about route nodes, elevation changes, weather, traÿc, multimodal transit, etc., along with crowd-sourced information about route impediments (e.g., construction), facilities, and rest opportunities to provide personalized route guidance for users. Currently, the app is being developed for both Android and iOS smartphone platforms using Android Studio and Swift, respectively, with supplemental coding using, Java, and database management software including local
	As shown in Figure 2, routes are developed using a series of location nodes, with weights for segments between nodes being associated with positive or negative valences depending on information present in the public and crowd-sourced datasets combined with individual needs and capabilities. For example, a segment with a steep elevation change or stairs would have a strong negative weighting for a person who uses a wheelchair, while crowd reported accessible restroom facilities may have a positive weighting 
	-
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	Figure
	Figure 2: Prototype Crowd-Source Interface of VRU 
	chair users detected in real-time. While this paper focuses on presenting the VRUPOD method, the full wayfnding capability will be possible by incorporating visual recognition works. 

	3.2 Sidewalk accessibility factor selection 
	3.2 Sidewalk accessibility factor selection 
	In this paper, some common factors used for individuals with disabilities routing are described in Table 2. The accessibility of each pedestrian segment for users with disabilities in this paper is defned by fve parameters: width, length, slope, sidewalk surface type, and weather condition. The width, length, slope, and surface type factors come from (201) and have been used in (Hashemi and Karimi, 2017), (Kasemsuppakorn et al., 2015), and (Sobek and Miller, 2006). Additionally, inclement weather conditions
	Figure
	concrete, asphalt, stone, brick, and gravel. The most common form of sidewalk material in the United States is concrete, the second material is asphalt (Huber et al., 2013). 
	Table 2: Sidewalk Parameter Selection Criteria for VRU 
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	Each sidewalk parameter (x)is normalized (xb), and the weight of each factor (x)is calculated regarding wheelchair user choices and preferences by using the Analytic Hierarchy Process (AHP) method (Hashemi and Karimi, 2017). An overview of the VRUPOD system is described in Figure 3. In this paper, we model the VRU mobility problem as the adaptive routing problem with real-time information of the network and present the formulation as a Markov decision process (MDP) (Rambha et al., 2016). A Q-learning framew
	Figure
	Static Sidewalk Score of Sidewalk Factors Factors 
	Determine the preference of the user by AHP 
	Calculate weight of each link from cost function VRUPOD routing 
	Optimal route 
	Figure 3: A VRUPOD Model for Vulnerable Road Users 
	the current state to an action, and optimal policy is the best possible action. The MDP can be solved using a Dynamic Programming method for problems where it is possible to develop the environment with the exact state transition probability and rewards. However, in most real-world problems, such as integrating real-time crowd-sourced information on sidewalk segments’ traversability status, we cannot precisely develop the environment. In such cases, the Q-Learning algorithm can solve the MDP, where the rewa
	Consider the sidewalk network as a graph G=(N,E) where n 2 N is the set of nodes and e 2 E is the set of edges. A VRU can move from nto nif an edge connects the two nodes. The objective of this work is to fnd the path or strategy that minimizes the total cost in a given origin-destination no,nd). Equation 1 is used to calculate the dynamic and personalized cost C(e)(t)of each sidewalk segment based on parameters that defne sidewalk segment accessibility for VRU. 
	0 
	pair (

	C(e)(t)=Ww(t)Sw(e) +Wl(t)Sl(e) +Ws(t)Ss(e)Swc(e) +Wsf (t)Ssf(e)Swc(e), (1) 
	where Sw(e), Sl(e), Ss(e), Swc(e), Ssf(e) are scores for width, length, slope, weather condition, and surface type of each segment used instead of actual values which are di!erent in range. In order to obtain the score of each factor the actual values are normalized using Equation 2. Let x be the actual value of each parameter, S (normalized) or the score of the factors we calculate as: 
	Figure
	x min(x)
	S = (2)
	max(x)  min(x) 
	Ww, Wl, Ws, Wsf are weights for width, length, slope and surface type. The values of weights 
	for each parameter are calculated using the AHP method. In the AHP method the summation of weights is equal to one (Equation 3). 
	Ww(t)+ Wl(t)+ Ws(t)+ Wsf (t)=1 (3) 
	Traversability status of each sidewalk segment at time t, given by the traversable segment status 
	 
	vector is H(t)= h(t),h(t),h(t),....,h|E|(t) , based on real-time crowd-sourced information 
	1
	2
	3

	from VRUMAP. 
	Binary classifcation is used to determine the traversability of the sidewalk segments. We impose a threshold "(e) for each sidewalk segment to determine whether the segment is traversable or not. If " (e), updated real-time by crowd-sourced information (e.g., information from VRUMAP) is greater than or equal to the threshold value, then the sidewalk segment is considered non-traversable (1), otherwise the sidewalk segment is considered traversable (0). Other studies have successfully followed a similar appr
	(Papadakis, 2013). 
	(Papadakis, 2013). 
	(Papadakis, 2013). 
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	In this sequential decision-making framework, the states s 2 S of the VRU at each decision stage k are defned as s =(nk,tk,H(tk)). At the current location nk 6= nd (nd is the destination node), the pedestrian must decide on which adjacent node to travel. The information available at this stage includes the current time tk and the traversable segment vector H(tk). There is a tradeo! between the number of segments to monitor and resulting projection accuracy by monitoring two segments ahead of the VRU’s curre
	1 
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	⇣ ⌘ 
	[E[E
	2 
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	sk = nk,tk,H(tk) where Hrepresent the traversability statuses of the set of frst 
	E
	1 
	E
	1 

	and second successor segments from the VRU’s current location. The goal is to determine the optimal policy, ! (sk), showing which segment the pedestrian must select. In this paper, the expected return starting at s, taking action a and following ! is Q(s, a). The optimal policy ! (s) for s 2 S is thus given by: 
	⇤ 
	!
	⇤

	! (s)=argmaxQ(s, a) (4) 
	⇤
	⇤

	a 

	3.3 Reinforcement learning 
	3.3 Reinforcement learning 
	We adopt Q-learning to obtain the optimal policy. At the current stage of the decision process, the agent will receive a reward; the sidewalk segment’s estimated cost C (n, n)comprising of the sum of C(e)(t)and a fxed penalty (0 if traversable and very large number if non-traversable) defned C(e)(t)accommodates the time-varying preferences of the VRU and the interaction e!ects between the sidewalk factors contributing to a path choice. Utilizing its current knowledge of the environment (the estimated Q-func
	0
	by the traversability status of the segment. As discussed, the cost function 

	hi 
	Q(s, a)=(1 #)Q(s, a)+# r +$ maxQ (s ,a) (5) 
	0 
	0 

	a 
	where (s, a)is state-action pair, # the learning rate, ris the reward that agent will receive and turn into new state s, and $ is a discount factor. The adaptive personalized routing for the VRU mobility problem can then be determined by using the fnal Q-table after a suÿcient number of iterations and convergence, providing the optimal action to take at each possible state. The VRUPOD model is shown in Algorithm 1, with additional details provided in the evaluation section. 
	0 
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	Figure
	Algorithm 1 Q-learning for VRUPOD method 
	Let ! = # [C (n, n)+maxaQ (s,a)] 
	0
	0 
	0
	0

	1: Input: G =(N, E), destination nd, learning rate # 
	2: Output Q-function for VRUPOD to nd 
	3: Initialize: Q(s, a)0, 8s 2 S, 8a 2 A(s) 
	4: for each way fnding do 
	5: s initial state 
	6: while s[0] =6 nd do 
	7: Select node a 2 A(s) 
	8: Travel to node n= a 9: Perceive new state s=(n,t,H (t)) 
	0 
	0 
	0
	0
	0

	10: Accept cost of segment C (n, n) 
	0

	11: Q(s, a) (1  #)Q(s, a)+ ! 12: ss
	0 

	13: end while 
	14: end for 
	15: Return Q 

	3.4 Analytic Hierarchical Process (AHP) 
	3.4 Analytic Hierarchical Process (AHP) 
	We use the AHP to decide with multiple objectives and criteria by determining how important a parameter or object is than another. In the developed method, weights are obtained for each factor of sidewalk using a 4 ⇥ 4 matrix A which is the pairwise comparison matrix. Each cell of matrix (aij ) in row i and column j denote how much more important factor i is than factor j. 
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	(6) 
	The importance of factors is assessed on a range from 1-9 where 1 means parameter i and j are of equal importance, and 9 means factor i is far more important than factor j. If factor 1 is fve times more important than factor 2, then factor 2 is one ffth as important as factor 1. Generally, n(n  1)/2 comparisons are required in which diagonal elements are equal to 1, and the other elements will simply be the reciprocals of the earlier comparisons. The AHP method uses a comparison matrix, assigns a weight to 
	The importance of factors is assessed on a range from 1-9 where 1 means parameter i and j are of equal importance, and 9 means factor i is far more important than factor j. If factor 1 is fve times more important than factor 2, then factor 2 is one ffth as important as factor 1. Generally, n(n  1)/2 comparisons are required in which diagonal elements are equal to 1, and the other elements will simply be the reciprocals of the earlier comparisons. The AHP method uses a comparison matrix, assigns a weight to 
	individual VRUs in this paper a survey dataset based on the ADA standard is used Kasemsuppakorn et al. (2015). Each survey question includes a comparison of the importance of two parameters. The importance of each parameter is defned using fve levels: extremely, very strongly, strongly, moderately and no di!erence. According to the user’s survey responses, a binary comparison matrix can be built. The weights that are obtained from the AHP method are used in the developed cost function to determine the weigh
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	8 >>>>>>>>>< >>>>>>>>>: 
	Concrete 1 Asphalt 2 
	Surface Type 
	= Brick 3 
	Cobblestone 4 Gravel 5 
	Weather condition ranges from level 1 to 5, where level 1 (sunny) indicates the best weather condition and level 5 (Extreme snow) the worst weather condition to accurately refect the interaction e!ects between the surface type and slope with the di!erent severity of the weather. 
	8 >>>>>>>>>< >>>>>>>>>: 
	Sunny 1 Moderate Rain 2 
	Weather Condition = Moderate Snow 3 
	Extreme Rain 4 Extreme Snow 5 
	This paper presents a numerical example for sunny, rainy, and snowy in the moderate cases of the weather condition for illustrative purposes. 
	4 DATA PREPARATION 
	4 DATA PREPARATION 
	To evaluate the usefulness of the developed method and calculate a cost for each sidewalk segment, the Boston sidewalk inventory is used, which includes width, length, slope, and sidewalk surface 
	To evaluate the usefulness of the developed method and calculate a cost for each sidewalk segment, the Boston sidewalk inventory is used, which includes width, length, slope, and sidewalk surface 
	type. Table 3 shows a sample database characteristic of the Boston sidewalk inventory. SWD_ID indicates a unique ID associated with each sidewalk segment, Width indicates the average width of the sidewalk, Length shows the length of the sidewalk, Slope shows average cross slope (perpendicular to the path of travel) in degrees, Mat shows primary sidewalk material (CC-Cement Concrete, BC -Bituminous Concrete). The weather condition information is assumed to be provided through online web-based data set such a
	-


	Figure
	Table 3: Sample Boston Sidewalk Inventory Database 
	SWD_ID 
	SWD_ID 
	SWD_ID 
	Width 
	Length 
	Slope 
	Mat 

	15739 
	15739 
	4 
	931.9775324 
	3.9 
	BC 

	5439 
	5439 
	8 
	282.649369 
	3.8 
	BC 

	4777 
	4777 
	17.5 
	1662.671837 
	0.8 
	BC 

	4778 
	4778 
	17 
	1561.205981 
	1.8 
	BC 

	4779 
	4779 
	18.5 
	1791.473169 
	0.7 
	BC 

	4949 
	4949 
	15.2 
	1416.268866 
	2 
	CC 

	4948 
	4948 
	15.5 
	1226.37165 
	1.5 
	CC 

	5476 
	5476 
	12 
	312.5817051 
	3.9 
	CC 

	5475 
	5475 
	14 
	306.143638 
	3.9 
	CC 





	4.1 Simulated Participants 
	4.1 Simulated Participants 
	The VRU database that is simulated in this paper includes fve participants who are new in the environment of study (Kasemsuppakorn et al., 2015). This includes the dataset collected through a feld survey for fve participants with one female and four males between 20 to 40 years old. The demographics of the participants in this dataset are age, gender, disability type, wheelchair make and model, most concern parameter, and their ftness level. The level of ftness scales from one to ten and determines the VRUs
	Figure
	5 RESULTS AND DISCUSSIONS 
	5 RESULTS AND DISCUSSIONS 
	The performance of the VRUPOD method is highlighted by comparing against the following 
	traditional models and their objectives. Static Minimum Cost (SMC): By appropriately adjusting the VRU mobility problem, we use the Dijkstra algorithm to minimize the path cost while the user’s preferences are set at the beginning of the trip. 
	Dynamic Minimum Cost (DMC): By appropriately adjusting the VRU mobility problem, we use the Dijkstra algorithm to minimize the time-dependent path cost by varying user preference at predefned trip duration or time steps. The DMC model will recalculate the current network’s shortest path and recommend the new path to the user when there is a non-traversable segment en-route from the origin to the destination. 
	Shortest Path (SP): Use the Dijkstra algorithm to fnd the minimum distance from the origin to the destination. 
	Non-traversable link 
	Figure 4: A Real-World Depiction of the Sidewalk Network used for Evaluating the Developed Model (Source: Google Maps) 
	Figure
	A case study is carried out on a simulated mid-size network (⇡ 1000ft⇥ 600ft) represented as an 8 ⇥ 8 grid (see Figure 4) and in a time frame [0-30 minutes] of user’s trip and fve time steps. The preferences of users may change in each time step in the DMC and VRUPOD method. There are 81 nodes and 144 segments in the case study network, and we assume that we have complete real-time information on all the segments. In the case study, the sidewalk network is considered as a graph in which nodes represent side
	Figure
	• Original Route 1. High slope 1. Rainy 2. Walkable B A 
	Figure 5: An Illustrative Example of the Advantage of the VRUPOD Considering Accessibility 
	The results of three scenarios are presented for sunny, rainy, and snowy weather conditions. For each scenario, a path cost comparison is made for SMC, DMC, and VRUPOD method to assess the performance. In our developed framework for sidewalk segment cost, the weather score infuences the segment’s cost through interaction with the surface type parameter. In e!ect, slick sidewalk surfaces (due to rain and snow) will signifcantly increase the segment’s overall cost, thus impacting VRUs optimal route choice. 
	Figure 6 , 7 and 8 show a comparison of four models for the same origin-destination (OD) and obstacle location in sunny, rainy and snowy weather conditions. A path cost comparison is done for SMC, DMC and VRUPOD to assess the performance. As mentioned earlier, weather conditions can a!ect the accessibility of the sidewalk. Slick sidewalk surfaces due to rain and snow greatly impact wheelchair users. The preference for the sidewalk slope parameter is di!erent for sunny, rainy and snowy weather. 
	Figure
	(a) Path graph for four models (b) Cost graph for three models 
	Figure 6: Comparison of Four Models for Same OD and Obstacle Location and Cost of Three Models by Time Step in a Sunny Weather 
	Figure
	(a) Path graph for four models (b) Cost graph for three models 
	Figure 7: Comparison of Four Models for Same OD and Obstacle Location and Cost of Three Models by Time Step in a Rainy Weather 
	Figure
	(a) Path graph for four models (b) Cost graph for three models 
	Figure 8: Comparison of Four Models for Same OD and Obstacle Location and Cost of Three Models by Time Step in a Snowy Weather 
	In sunny weather, the sidewalk is not slick so VRUs can traverse a higher slope while a normal or average slope will be preferred for rainy and snowy conditions. Path cost for the SP is the same in sunny, rainy and snowy weather. Looking at each time step, VRUPOD has less steep increase in the cost, most of them occurred during time step 1-2, where the location corresponding to the non-traversable link resulting in increasing the cost of the path. Cost evaluation reveals the superiority of the VRUPOD to the
	To further investigate the VRUPOD path selection we change the location of the origin and destination, while keeping the obstacle location and network size the same as Figure 6 and compare 
	-

	Figure
	(a) Path graph for four models (b) Cost graph for three models 
	Figure 9: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of Three Models by Time Step in a Sunny Weather 
	Figure
	Figure 10: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of Three Models by Time Step in a Rainy Weather 
	Figure 10: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of Three Models by Time Step in a Rainy Weather 


	(a) Path graph for four models (b) Cost graph for three models 
	(a) Path graph for four models (b) Cost graph for three models 
	(a) Path graph for four models (b) Cost graph for three models 

	Figure
	Figure 11: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of Three Models by Time Step in a Snowy Weather 
	Figure 11: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of Three Models by Time Step in a Snowy Weather 


	with the three di!erent methods (see Figures 9, 10 and 11). The results for sunny, rainy, and snowy weather show that VRUPOD fnds the most optimal routes with minimum cost, averaging 15% and 7% less total cost compared to SMC and DMC. Looking at each time step, VRUPOD has a less steep increase in the cost, mostly occurring during time steps 1-2, where the location corresponding to the non-traversable segment results in increasing the cost of the path. The Q function is directly updated based on the informat
	As discussed above, this can be attributed to the fact that the VRUPOD policy is based on comparing 
	Figure
	Figure 12: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of Three Models by Time Step in a Sunny Weather 
	Figure 12: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of Three Models by Time Step in a Sunny Weather 


	(a) Path graph for four models (b) Cost graph for three models 
	Figure
	Figure 13: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of Three Models by Time Step in a Rainy Weather 
	Figure 13: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of Three Models by Time Step in a Rainy Weather 


	(a) Path graph for four models (b) Cost graph for three models 
	(a) Path graph for four models (b) Cost graph for three models 
	(a) Path graph for four models (b) Cost graph for three models 

	Figure
	Figure 14: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of Three Models by Time Step in a Snowy Weather 
	Figure 14: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of Three Models by Time Step in a Snowy Weather 


	Q values of the nearby segments to decide which way to go. The Q-values are obtained at convergence, having accommodated all possible scenarios of obstacle locations. In all three scenarios, the VRUPOD solution for sunny weather consistently reported a lower total cost than VRUPOD solutions for rainy and snowy weather conditions. This is expected since the increase in the cost of sidewalk segments during sunny weather conditions is lower compared to the sidewalk segment cost during rainy and snowy condition
	Table 4 shows the summary of results estimated for the di!erent weather conditions, origin-destination location, and obstacle location (including the results from the omitted plots). The percentage improvement is estimated for VRUPOD compared to SMC (A%) and DMC (B%), respectively, and shown in the table as A–B. Some possible design considerations and architecture have been proposed to help the fnal development of a personalized navigation system for wheelchair users (Ding et al., 2007). While the work (Din
	Figure
	Table 4: Summary of results for di!erent scenarios 
	OBSTACLE 
	OBSTACLE 
	OBSTACLE 
	METHOD 

	COND. 
	COND. 
	O ! D 
	LOCATION 
	SMC 
	DMC 
	VRUPOD 
	% AVG IMP. 

	Sunny 
	Sunny 
	(0, 0) ! (8, 8) (0, 1) ! (7, 8) (0, 0) ! (8, 8) 
	(2, 2) ! (3, 2) (2, 2) ! (3, 2) (4, 6) ! (4, 7) 
	78.7 73.6 75.2 
	71.5 66.0 70.5 
	66.0 60.0 67.4 
	16–7 18–9 10–4 

	Rainy 
	Rainy 
	(0, 0) ! (8, 8) (0, 1) ! (7, 8) (0, 0) ! (8, 8) 
	(2, 2) ! (3, 2) (2, 2) ! (3, 2) (4, 6) ! (4, 7) 
	79.6 74.8 78.2 
	75.4 69.0 72.5 
	71.3 64.0 69.1 
	10–5 14–7 12–5 

	Snowy 
	Snowy 
	(0, 0) ! (8, 8) (0, 1) ! (7, 8) (0, 0) ! (8, 8) 
	(2, 2) ! (3, 2) (2, 2) ! (3, 2) (4, 6) ! (4, 7) 
	82.6 81.4 80.1 
	77.8 74.4 77.8 
	73.4 69.3 71.5 
	11–5 15–7 11–8 


	in Table 4 show that VRUPOD, which integrates unexpected non-traversable segments location information, provides considerable improvement in performance than the SMC and DMC models. 
	A number of trips are conducted with the starting node (0,0) as the origin to the ending node (8,8) as the destination to show how adaptive routing path suggestions are a!ected by di!erent scenarios of user preferences. We use survey records (Kasemsuppakorn et al., 2015) of the preferences of four distinctive users and estimate each sidewalk parameter’s weight using the AHP approach. As the trip progresses, we gradually increase the weight for sidewalk length while proportionally decreasing the weight for t
	In Figure 15, the results show the di!erent path options that are suggested by the VRUPOD method. In general, the total score for any given parameter (e.g., sidewalk width, slope, etc.) for the optimal 
	Figure 15: Shows How the Preference of Users A!ects the Path Suggestion from the VRUPOD Method 
	path directly correlates with the user’s preference ratings. For instance, the sidewalk segments forming the path recommended for User1 will have more segments with a lower elevation than for User2. 
	We conduct a Monte Carlo simulation with 100 scenarios of origin-destination and obstacles randomly placed at various locations in the grid to evaluate the robustness of the developed model. We summarize the results for estimated path cost for VRUPOD and DMC through a boxplot. Figure 16 shows a lower mean cost for VRUPOD than DMC. We observe a similar interquartile range for VRUPOD and DMC with a slightly narrow range for VRUPOD than DMC. The policies generated by VRUPOD (q-learning model) inherently accomm
	Furthermore, we assess the total average score for parameters such as sidewalk surface type and average slope for the optimal path from the VRUPOD method. The calculated quantities from the VRUPOD method are compared with the shortest path in two tests. In the frst test, sidewalk surface 
	Furthermore, we assess the total average score for parameters such as sidewalk surface type and average slope for the optimal path from the VRUPOD method. The calculated quantities from the VRUPOD method are compared with the shortest path in two tests. In the frst test, sidewalk surface 
	type is the most critical parameter; the lower the sidewalk surface type score, the better the sidewalk path. In the second test, the sidewalk slope is the most important factor; the lower the sidewalk slope score, the better the sidewalk path. Figures 17 and 18 represent the comparison graphs: average surface type and average slope, respectively. As shown in Figure 17, 85.71% of routes recommended by the VRUPOD method have the lowest average sidewalk surface type score. In the second test, as shown in Figu

	Figure 16: Boxplot of Monte Carlo Simulation Results for Path Cost Based on Routing Policies from the VRUPOD Method and DMC Method 
	Figure
	Figure 17: The Average Sidewalk Surface Type Score Comparison Between VRUPOD and Shortest Path 
	Figure 17: The Average Sidewalk Surface Type Score Comparison Between VRUPOD and Shortest Path 


	Figure
	Figure 18: The Average Sidewalk Slope Score Comparison Between VRUPOD and Shortest Path 
	Figure 18: The Average Sidewalk Slope Score Comparison Between VRUPOD and Shortest Path 


	Finally, a quantitative assessment of the computational complexity of Algorithm 1 is provided for pedestrian networks of various sizes. The mean and standard deviation of the CPU time for 5 experiments is reported. The processor specifcation used for implementation is 2.9 GHz 6-Core Intel Core i9, 32 GB RAM. 
	Figure
	Table 5: Quantitative assessment of the computational complexity of VRUPOD 
	Pedestrian network size 
	Pedestrian network size 
	Pedestrian network size 
	CPU time (s) 

	(nodes, edges). 
	(nodes, edges). 
	(mean, std) 

	(25 , 41) 
	(25 , 41) 
	(9005.3, 502.7) 

	(81, 144) 
	(81, 144) 
	(10980.9, 1770.1) 

	(121, 220) 
	(121, 220) 
	(13007.1, 1997.5) 

	(24725, 20881) 
	(24725, 20881) 
	(–, –) 


	The computational time for VRUPOD increases with the increase in size of the pedestrian network. The system state space is a subset of the Cartesian product of the number of nodes, the time periods of interest, and the number of segments being monitored from the VRU’s location. Thus, the network size is one of the essential considerations that a!ect the size of state space. For cases with large state spaces, this leads to a high computational time since the state space must be explored to determine the opti

	6 CONCLUSIONS AND RECOMMENDATIONS 
	6 CONCLUSIONS AND RECOMMENDATIONS 
	Prior work has focused on wayfnding with static parameters related to the sidewalk for people with disabilities, however, wayfnding with static parameters might be impractical in real world situations. Routing with static parameters is only applicable when the same fxed route and the same conditions of the route are valid every day. This paper provides a VRUPOD model incorporating dynamic parameters in wayfnding for VRUs. The method developed in this paper uses the information that 
	Prior work has focused on wayfnding with static parameters related to the sidewalk for people with disabilities, however, wayfnding with static parameters might be impractical in real world situations. Routing with static parameters is only applicable when the same fxed route and the same conditions of the route are valid every day. This paper provides a VRUPOD model incorporating dynamic parameters in wayfnding for VRUs. The method developed in this paper uses the information that 
	is collected from traveling on the sidewalk network and updates the best decision values. Thus if an unexpected event happens on the sidewalk the VRU can reroute. Individuals with disabilities also can explore unfamiliar places through the VRUPOD method. The optimal policies based on VRUPOD fnd the most accessible route adaptively. The technique is a personalized wayfnding since users with disabilities choose the importance of parameters a!ecting the sidewalk by the AHP method. A case study is carried out o
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